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group r. Its coefficients possess many remarkable arithmetic properties, which are set 
forth in the appended references. For example, the congruence 

(n + 1) c(n) - 0 (mod 24), 

due to D. H. Lehmer [2], implies that c(n) is even except possibly when n 7 
(mod 8). In this case it may be shown that c(n) assumes both even and odd values 
infinitely often, although necessary and sufficient conditions for c(n) to be odd are 
still unknown. 

The coefficients were first computed for - 1 < n < 24 by H. S. Zuckerman 
[7] and then for - I < n < 100 by A. van Wijngaarden [6]. Here we tabulate the 
coefficients for - 1 S n < 500. There would seem to be little point in extending the 
table further, since c(500) is already a number of 120 digits. 

The coefficients were computed, using residue arithmetic, by means of the fol- 
lowing formula [5}: 
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where I op-24(f)Xn = Hl (1 n)24. 

The total computation time on a UNIVAC 1108 system was approximately four 
minutes. 
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12 [9].-DANIEL SHANKS, Table of the Greatest Prime Factor of N2 + 1 for N = 

1(1)185000, 1959, two ms. volumes, each of 185 computer sheets, bound in card- 
board covers and deposited in the UMT file. 

This table was calculated in 1959 on an IBM 704 system by the p-adic sieve 
method described completely in [1]. The method is extraordinarily efficient: each 
division performed is known a priori to have a zero remainder. From the complete 
factorization of n2 + 1 for n = 1(1)185000 I then tabulated only the greatest 
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prime factors, 500 per page, arranged in an obvious format. (One can see at once which 
n2 + 1 are prime by the relative size of the corresponding listed factors.) 

These factorizations relate to questions concerning reducible numbers, primes of 
the form n2 + 1, formulas for 7r, and other questions surveyed in [1]. 

In [2] and [3] similar p-adic sieves were run for n2 ? 2, n2 + 3, n2 + 4, n2 ? 5, 

n2 ? 6, and n2 ? 7 for n = 1(1)180000, but only statistical information was pre- 
served, not the complete table of greatest prime factors. 
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13 [9].-J. D. SWIFT, Table of Carmichael Numbers to 109, University of California 
at Los Angeles, ms. of 20 pages, 81 x 11", deposited in the UMT file. 

A Carmichael number, CN, is a composite number n such that an 1 1 

(mod n) whenever (a, n) = 1. Carmichael numbers are starred in Poulet's table [1] 
of pseudoprimes less than 108. The present table corrects that table and extends the 
range to 109. The CN's are given with their prime factors. 

Calculations were performed on a CDC 1604 made available by IDA, in Princeton. 
The computer programs used depended explicitly on congruence properties of CN's 
with respect to their component primes rather than on the pseudoprimality with respect 
to any particular base. A different routine was run for each possible number of primes 
occurring in the factorization, from 3 (the absolute minimum) to 6 (the effective maxi- 
mum defined by the upper limit of the table). 

For example, consider n = P1P2P3 = (r1 + 1) (r2 + 1) (r3 + 1). The basic cri- 
teria are that ri lP1Pk - 1 where i, j, k is a permutation of 1, 2, 3. For a fixed 
choice of p1 (assuming P1 < P2 < P3), bounds on the limits of the calculation are 
obtained. In this simplest case an explicit bound is available: 

p < (p6 + 2pl - p4 - P3 + 2p2 - pl)/2; 

and this is actually a CN for p1 = 3, 5, 31, .(?). 

The total number of CN's less than or equal to each power of 10 is as follows: 
x CN(x) ratio 

14 7 
15 16 2.3 

6 2.7 
1?8 105 2.4 
i8 25 2.4 10 2565 

109 646 . 


